
Chapter_3.md 5/25/2021

1 / 19

ProximaSafe: Joining the Dots in OCI to build a Stream
Analysis Lab

Chapter Three: Sensors, Pipelines and back to Edge

Wandering the face of the Earth

Wondering what our dreams might be worth

Learning that we're only immortal

For a limited time

(Neil Peart, 1991)

What we've done so far

Greetings, and welcome to Chapter Three, the last of this series. In the previous articles we set up all the

bits and pieces we need to build a portable lab aimed to study and develop stream analysis, such as:

All the Oracle Cloud Infrastructure artifacts needed, such as Golden Gate Stream Analytics, OCI

Compute running the MQTT service, Oracle Functions, API management and the wiring to connect

the services.

Edge components mostly made on Raspberry Pi, ESP32 elements and Arduino, easy to procure,

setup and stow away

Now it's time to design some example use cases that imply:

Use Cases design & considerations

Assign a task to each of the edge components

Design and implementing pipelines within Stream Analytics using patterns included with the platform

Use Cases

We can think of - at least - three scenarios using the technologies set up during the previous chapters and

effectively make the most of stream analysis:

Checking if the environmental parameters of a given perimeter (a closed space, i.e. an university

classroom or an office) are safe: if over a threshold or if there's an up trend in temperature and/or

humidity, the system will be required to send an alarm back to the edge to take appropriate actions.

Checking if the number of events in a determined point and within a certain number of seconds

indicates an abnormal condition: for instance, a sensor in a one-way corridor that simply count the

passage of people. Should the parameters go over a threshold within a number of seconds or if an up

trend is detected, we could decide to stop the people accessing the corridor by turning on a red

'traffic light' to mitigate the chance of a gathering.

Check if sanitizers in specific locations are malfunctioning (empty gel), or are being tampered with

by checking messages sent by the dispensers: if the stream analysis module receives two alarms



Chapter_3.md 5/25/2021

2 / 19

within a time range (few seconds) the we'll warn the person responsibly of maintenance by sending a

message to a wearable smart tag and solve the problem.

These simplistic use cases do not fully take into account all the possibilities offered by selecting a

Geofence in Golden Gate Stream Analytics, that is a cool and useful function for scanning what is

happening within a defined set of coordinates, but could serve as basis for more sophisticated (and real!)

analysis performed on any size of environment. Nevertheless, we'll hardwire each flow to different

coordinates mocking the presence of sensors in the real world.

Assign the tasks to Edge components

Here's the map of the components we're going to use (and program):

Please find the code for each of these boards at this address (NOTE: insert the GitHub link, open in a new

window/tab).

1 - Arduino with DHT11 sensor (Environment)

This configuration is the 'Hello World' equivalent of the Arduino programming. The board is an Arduino

MKR1000, sporting a 32-bit, low power ARM MCU provided by the Atmel ATSAMW25 SoC. Wi-Fi and

MQTT features are provided by the WiFi101.h and pubsub.h libraries, respectively. No GUI is provided,



Chapter_3.md 5/25/2021

3 / 19

except for the Serial Monitor available in Arduino IDE, so we're (possibly) going to use the

Serial.println() extensively.

As I mentioned in one of the previous chapters, I tried to switch to a more compact sensor (a BMP280 hat

connected to a M5StickC) in order to avoid a scruffy jumper-based connection between the MKR1000 and

the DHT11, but the temperature and humidity measured is heavily influenced by the heat generated by the

M5, which kinda misses the objective. So, we'll remain with the MKR1000 - and, believe me or not, it's

definitely not a leftover from the Proxima City days, I just love the board! This simple board will send

information about temperature and humidiy that'll be intercepted by Stream Analytics to verify up/down

trends and eventually go downstream with possible anomalies.

2 - M5Stack Fire (Event Generator)

The M5Stack Fire (a.k.a the Red One) is based on the M5 packaging and it's based on the ESP32

architecture. This box is the primary event generator, which downsizes - a bit - its capabilities (it's got even

an IMU posture sensor, that would be a nice feature to enhance the tampering use case), so it'll fire events

simulating the people flowing in a corridor and events from sanitizers.

Fortunately, most of the M5 have a tiny cute display, so we'll be able to expose feedback when

sending/receiving messages to OCI.



Chapter_3.md 5/25/2021

4 / 19

The UI I've programmed is really basic (in fact, it's character based), with the addition of battery level

detection (found the API call somewhere, and it's not accurate nor reliable, as I discovered), the number of

messages sent, and results. The buttons are programmed to send a single message or burst of messages

to trigger a pattern-based analysis in Stream Analytics.

3 - M5Stack Core 2 (Alarm Detector)

The M5Stack Core 2 (a.k.a the White One) is an evolution from the previous M5 box, it's got touch sensors

and another bunch of goodies that we won't use, since the its main task is to display alarms for corridors

and possibly other locations where we need to show an alert - in a form of a red traffic light.



Chapter_3.md 5/25/2021

5 / 19

This box could be expanded with an external display via the Grove port or a relay as an actuator (actually,

I've put some code for the external LCD RGB display but I'm not using that).

4 - E-ink Smart Badge (Badgy)

The Badgy device is equipped with an e-ink display and the ESP8266 chip. While e-ink refresh rates aren't

ideal for contents changing rapidly, it is certainly good for the Sanitizers use case to report to the

maintenance employee which dispenser machine has incurred into troubles, in order to fix it quickly even

when on the move during regular maintenance routines.

https://www.tindie.com/products/sqfmi/badgy-iot-badge/


Chapter_3.md 5/25/2021

6 / 19

5 - M5Stick Wearable Beeper

In alternative to the Smart Badge, the gray M5Stick can be worn as a watch/beeper receiving alarm

messages from OCI. The M5Stick (a.k.a the Grey One) is even smaller than the previous M5, it's still based

on the ESP32 architecture and it sports Wi-Fi, Bluetooth and a IR blaster.



Chapter_3.md 5/25/2021

7 / 19

6 - M5Paper Billboard

The M5Paper is the last addition to the M5 family: e-ink, capacitive touch screen, a beefy battery and a

wide display - looks like we just found the billboard for our microlab! This device will be in charge to display,

one page at a time, all the alarm events coming from OCI with date and time.

https://github.com/m5stack/M5EPD


Chapter_3.md 5/25/2021

8 / 19

Since it's a full-blown eInk minitablet with touch support, I suppose I should implement a nicer UI touch-

based, to allow the drill down of a particular message to get more info about it. This could be an idea for a

further development.

7 - Raspberry Pi 4B as the Gateway

We've configured, during the previous chapters, the Raspberry Pi to act as our local MQTT server

(Mosquitto-Edge) bridged to the MQTT server resident on a OCI Compute instance (Mosquitto-Cloud), and

now it's time - at last - to let the other boards/sensors send message to this thingie and see the loopy

conversation Edge » Cloud » Edge somewhat effective.



Chapter_3.md 5/25/2021

9 / 19

Most of the M-Fivers share the same code snippets:

Getting a Wi-Fi connection

  WiFi.begin(ssid, pass); 
   
   
  // Wait for connection 
  while (WiFi.status() != WL_CONNECTED) { 
    delay(500); 
    Serial.print("."); 
  } 
 
  Serial.println(""); 
  Serial.print("Connected to "); 
  Serial.print(ssid); 
  Serial.println(""); 
  Serial.print("IP address: "); 
  Serial.print(WiFi.localIP()); 
  Serial.println(""); 



Chapter_3.md 5/25/2021

10 / 19

Connect to the MQTT server running in the Raspberry Pi

  mqttClient.setServer(BROKER,MQTT_PORT); 
  mqttClient.connect(clientId); 
   
  Serial.println("Connecting to MQTT Broker"); 
   while (!mqttClient.connected()) { 
    if (mqttClient.connect(clientId)) { 
        Serial.println("Waiting for MQTT Broker"); 
        Serial.print("."); 
        delay(500); 
    } 
  }  

Getting time from an NTP server and print it in a human-readable form

 
  // Get time considering Time Zone and Daylight Offset 
  configTime(gmtOffset_sec, daylightOffset_sec, ntpServer); 
  struct tm timeinfo; 
 
  if (!getLocalTime(&timeinfo)) { 
    Serial.println("No Time from NTP Server"); 
  } 
 
  strftime (buf, sizeof(buf), "%B %d %Y", &timeinfo); 
 

Subscribing to a topic: in this case we'll subscribe to the cloud/alarm topic

 
  mqttClient.subscribe(TOPIC); 
  Serial.println("Subscribed to MQTT topic"); 
 

and process the received messages with a callback, showing the alerts in different colors

void DisplayCallback(char* topic, byte* payload, unsigned int len)
{ 
 
  Serial.println((String)topic); 
  Serial.println(len+1); 
 
   
  if ((String)topic == ALARM_TOPIC) { 



Chapter_3.md 5/25/2021

11 / 19

 
      // Save Message 
      char msg[300]; 
      for (int i=0; i < len; i++)  
        msg[i] = payload[i]; 
      msg[len] = NULL; 
       
      // Issue an audio alarm 
      AudioEffect(); 
 
      // Filter message Status 
      if ((String)msg == "{\"STATUS\":\"Detection Point\"}") {  
        M5.Lcd.fillScreen(TFT_RED); 
        M5.Lcd.setCursor(10, 40); 
        M5.Lcd.setTextColor(TFT_BLACK,TFT_RED); 
        M5.Lcd.setTextSize(2); 
        M5.Lcd.println("Gates Alert");       
      }  
      if ((String)msg == "{\"STATUS\":\"Sanitizer 2nd Floor\"}") { 
        M5.Lcd.fillScreen(TFT_ORANGE); 
        M5.Lcd.setCursor(10, 40); 
        M5.Lcd.setTextColor(TFT_BLACK,TFT_ORANGE); 
        M5.Lcd.setTextSize(2); 
        M5.Lcd.println("Sanitizer Alert"); 
      }  
      if ((String)msg == "{\"STATUS\":\"DHT11\"}") { 
        M5.Lcd.fillScreen(TFT_ORANGE); 
        M5.Lcd.setCursor(10, 40); 
        M5.Lcd.setTextColor(TFT_BLACK,TFT_ORANGE); 
        M5.Lcd.setTextSize(2); 
        M5.Lcd.println("Environment"); 
      }  
  } else if ((String)topic == ALARM_CLEAR) { 
      M5.Lcd.fillScreen(TFT_GREEN); 
      M5.Lcd.setCursor(10, 40); 
      M5.Lcd.setTextColor(TFT_BLACK,TFT_GREEN); 
      M5.Lcd.setTextSize(2); 
      M5.Lcd.println("Ready"); 
  } 
 
  delay(100); 
} 

Publishing a message from the Event Generator by pressing a button

  if (M5.BtnA.isPressed()) { 
      M5.Lcd.clear(BLACK); 
      M5.Lcd.setCursor(10, 40); 
      M5.Lcd.println("Sending Message..."); 
 
      char* msg = formatPeopleMessage(msgbuf, "Gates", "Detection Point", 
timestamp, "People passing", fLatGate, fLonGate); 



Chapter_3.md 5/25/2021

12 / 19

      Result = mqttClient.publish(PEOPLE_TOPIC, msg, true); 
      M5.Lcd.setCursor(10, 60); 
      if (Result) 
        M5.Lcd.println("Sent."); 
      else 
        M5.Lcd.println("Not sent."); 
       
      M5.Lcd.setCursor(10, 220); 
      M5.Lcd.setTextColor(TFT_WHITE); 
      M5.Lcd.printf("Battery : %i%%", getBatteryLevel()); 
      ledFeedback(PEOPLE_EVENT); 
      delay(100); 
  }  

Please consider this code just as a reference: most of the times I struggle to remember what I did during the

previous tinkering sessions, so I'm all in for code that speaks for itself.

Pipelines setup

Check tampering with Sanitizers

Here's the first pipeline, using the interactive designer included with Stream Analytics.

Translating the visual pipeline into words, here's what it does:

Accept messages from OCI Streaming as a source, defined in the Catalog

Query all the messages where the field sensors contains the text Sanitizers. Then, three actions
take place:



Chapter_3.md 5/25/2021

13 / 19

Produce a geospatial visualization based on Latitude and Longitude coordinates located in the

message.

Check if the message from the same sanitizer has been sent previously within a short time

span via the pattern 'A' followed by 'B'. If this pattern is detected, we'll invoke the OCI

Function previously created in Chapter Two to send the alarm back to edge.

Format the message to JSON via a To Json pattern and store the message in an Autonomous

DB defined as a target in the Catalog (I think that could be a nice addition).

Any alarm should result in a message sent to the OCI Function mqtt_pub which in turn routes the message

to the Mosquitto-Cloud instance, and eventually sent to the edge via MQTT Bridging, using the

cloud/alarm topic.

The message will be shown on the Badgy and on the Billboard as well, since these devices are listening on

this specific topic:

The Beeper can also be triggered with an audio alert. Should you be interested in having the audio file

played on the alert event, I cannot publish that. It's copyrighted (Jimi Hendrix's "Purple Haze").

Detection Points & Environment alamrs

Here's the detection points pipeline, which can be triggered by push the Burst button on the Event

Generator (the Red box).



Chapter_3.md 5/25/2021

14 / 19

Stunningly similar to the previous one, here are the inner workings:

Accept messages from OCI Streaming as a source, defined in the Catalog (as before).

Query all the messages where the field sensors contains the text Detection Point. Then the
actions:

Produce a geospatial visualization based on Latitude and Longitude coordinates located in the

message (as before).

Check if messages from the same detection point have been sent previously within a time span

(30 seconds, maybe?) via the pattern Up Trend. If true, we invoke the OCI Function previously

created to send the alarm back to edge.

In this case we should light up a red traffic light where the detection point is located in order to discourage

(or deny) the access to that gate, corridor, or location. Since all of the edge components are miniaturized,

we'll just display a red alert within our Alarm Detector M5 box:



Chapter_3.md 5/25/2021

15 / 19

The Environment alarm pipeline could be designed with the same steps, analyzing the temperature and

humidity changes in order to detect an up trend, and clear the alarm when environmental values are within

an acceptable range. Let's follow the pipeline construction steps in details:

From the Catalog Menu, let's create a new Pipeline selecting our Stream.



Chapter_3.md 5/25/2021

16 / 19

 

A basic canvas should be displayed with the name of the Stream involved. Then, after a right click on

the Stream icon, we are presented with a menu to add a Stage: selecting the Query stage, we'll make

sure to process only the environment data coming from the DHT11 sensor.

 

This query on the data in motion will select messages coming from our environmental sensor by

selecting the Filters tab in the upper right menu and inserting some simple query data, such as:



Chapter_3.md 5/25/2021

17 / 19

It's a simple and intuitive mechanism can be applied anywhere in Golden Gate Stream Analytics, that

makes the construction of pipeline easy and intuitive! Even without committing the pipeline in

production mode, you can see immediately the effects in real time: note that on the Live Output pane

only the DHT11 events are displayed.

We can proceed with pipeline build by adding an up trend pattern selecting temperature or humidity

as the Tracking Value and insert a call to the OCI Function and will return an alarm to the edge if the

conditions are met:



Chapter_3.md 5/25/2021

18 / 19

Every time that we feel that the pipeline is ready (and we can test any part of it while designing it,

interactively), we can commit the pipeline (note that the target elements are activated only the pipeline is in

the Published state).

Epilogue

Setting up a personal development laboratory with the help of few development boards, sensors and some

OCI resources has never been easier (and fun!). Every test has been made connecting the edge elements to

a wireless router 4G-enabled that I acquired some time ago (well, I don't have a full 4G connection where I

live, it's a frontier signal zone), so the connection to Oracle Cloud Infrastructure is just another variable

factor in evaluating the lab performance, which - anyway - is frankly good.

Once the OCI function has been warmed up (by means of test messages sent at irregular intervals) the

round-trip time between the anomaly phenomenon induced in the edge lab and the alarm returned and

processed in the edge is almost instantaneous. To shed a light regarding the things to improve on this

base configuration, let's examine the following considerations:

Being a development lab based on development boards, everything can be optimized (my code for

sure).

While the local Wi-Fi used by the boards is steady, the 4G (or 3G, most of the times) available

connection used to reach the OCI resources from this microlab represents a 'real world' connectivity

example (no 5G here in the neighbourhood...).

The MQTT to OCI Python router could be containerized and made more robust within an orchestrator

(OKE).

We could use OCI compute to setup a number of VMs injecting load to the Cloud components via

siege, vegeta or any burden-related generators to observe the behaviour of the system.

Any other thing that is fun

I believe that we could reuse the concept, maybe with different sensors, for a variety of use cases that

encompass the usage of actual industrial sensors, geofences and other goodies.

Thanks for your patience, and see you on Zoom.

https://docs.oracle.com/en-us/iaas/Content/ContEng/Concepts/contengoverview.htm


Chapter_3.md 5/25/2021

19 / 19

Zip and Zest!


